A human nuclease specific for G4 DNA.

نویسندگان

  • H Sun
  • A Yabuki
  • N Maizels
چکیده

We have identified a human nuclease that specifically cleaves four-stranded DNA stabilized by G quartets (G4 DNA). This nuclease, GQN1 (G quartet nuclease 1), cuts within the single-stranded region 5' of the barrel formed by stacked G quartets. GQN1 does not cleave duplex or single-stranded DNA, Holliday junctions, or G4 RNA. Cleavage depends on DNA structure and not on flanking sequence. Activity is elevated in but not restricted to B cells, making GQN1 a strong candidate for function in immunoglobulin heavy chain class switch recombination. Identification of a mammalian nuclease that specifically cleaves G4 DNA provides further support for the notion that DNA structures stabilized by G quartets form in vivo and function in regulated recombination and genomic evolution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Processing of G4 DNA by Dna2 helicase/nuclease and replication protein A (RPA) provides insights into the mechanism of Dna2/RPA substrate recognition.

The polyguanine-rich DNA sequences commonly found at telomeres and in rDNA arrays have been shown to assemble into structures known as G quadruplexes, or G4 DNA, stabilized by base-stacked G quartets, an arrangement of four hydrogen-bonded guanines. G4 DNA structures are resistant to the many helicases and nucleases that process intermediates arising in the course of DNA replication and repair....

متن کامل

Processing of G4 DNA by Dna2 Helicase/Nuclease and RPA Provides Insights into the Mechanism of Dna2/RPA Substrate Recognition

Processing of G4 DNA by Dna2 Helicase/Nuclease and RPA Provides Insights into the Mechanism of Dna2/RPA Substrate Recognition Taro Masuda-Sasa, Piotr Polaczek, Xiao P. Peng, Lu Chen and Judith L. Campbell Braun Laboratories, 147-75, California Institute of Technology, Pasadena, CA 91125 Running title: Dna2/RPA/G4 interactions

متن کامل

PARP3 is a promoter of chromosomal rearrangements and limits G4 DNA

Chromosomal rearrangements are essential events in the pathogenesis of both malignant and nonmalignant disorders, yet the factors affecting their formation are incompletely understood. Here we develop a zinc-finger nuclease translocation reporter and screen for factors that modulate rearrangements in human cells. We identify UBC9 and RAD50 as suppressors and 53BP1, DDB1 and poly(ADP)ribose poly...

متن کامل

MAZ-binding G4-decoy with locked nucleic acid and twisted intercalating nucleic acid modifications suppresses KRAS in pancreatic cancer cells and delays tumor growth in mice

KRAS mutations are primary genetic lesions leading to pancreatic cancer. The promoter of human KRAS contains a nuclease-hypersensitive element (NHE) that can fold in G4-DNA structures binding to nuclear proteins, including MAZ (myc-associated zinc-finger). Here, we report that MAZ activates KRAS transcription. To knockdown oncogenic KRAS in pancreatic cancer cells, we designed oligonucleotides ...

متن کامل

Mammalian DNA2 helicase/nuclease cleaves G-quadruplex DNA and is required for telomere integrity.

Efficient and faithful replication of telomeric DNA is critical for maintaining genome integrity. The G-quadruplex (G4) structure arising in the repetitive TTAGGG sequence is thought to stall replication forks, impairing efficient telomere replication and leading to telomere instabilities. However, pathways modulating telomeric G4 are poorly understood, and it is unclear whether defects in thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 22  شماره 

صفحات  -

تاریخ انتشار 2001